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Boundary Integral Neural Networks for Acoustic Radiation

Your Task
Physics-informed neural networks (PINNs) have great potential in solving computational physics
problems. They incorporate the residual of a partial differential equation and boundary conditions into
the loss function of a neural network, implicitly learning a solution that satisfies the boundary value
problem.
Boundary integral neural networks (BINNs) represent an extension of PINNs, focusing on solving
boundary integral equations. The key advantage of this approach lies in the fact that the boundary
conditions are inherently satisfied within the boundary integral equation. As a result, the optimization
task solely involves minimizing the residual of the boundary integral equation, without the need for
multiple loss terms for the boundary conditions. It is your task to apply BINNs for solving acoustic
radiation problems. BINNs offer two primary benefits: Firstly, they are mesh-free, eliminating the need
for complex mesh generation. Secondly, they enable a purely data-driven approach to sound
radiation. This means that vibration measurement data can be directly used for predicting the radiated
sound field, making it particularly useful in practical applications.
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Figure 1: In BINet, fundamental solution G(x, y, α) explicitly depends on the operator Lα of the equation,

while the density function h(y, α, β, θ) is implicitly dependent on Lα and the boundary ∂Ωβ . This implicit

dependence is approximated by a neural network whose input is Lα and ∂Ωβ . These two parts are

multiplied together and integrated on the boundary ∂Ωβ , giving the output of BINet. The boundary

condition is taken as the supervisory signal for the loss.

To train BINet, the loss function is given by (3.4) in Theorem 3.1.

L(θ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

‖S[h( · ; θ)](x)− g(x)‖2∂Ω, single layer potential

‖( 12I +D)[h( · ; θ)](x)− g(x)‖2∂Ω, double layer potential (Interior problem)

‖(− 1
2I +D)[h( · ; θ)](x)− g(x)‖2∂Ω, double layer potential (Exterior problem)

(3.5)

where S and D are the potential operators defined in Theorem 3.1, and I is the identity operator.

In BINet, the differential operator Lα and the computational domain boundary ∂Ωβ are naturally

incorporated, which means that BINet has the capability to learn the map from the differential operator

and computational domain to solutions.

4 Convergence Analysis of BINet

In recent years, many efforts have been devoted to the development of the convergence theory for the

over-parameterized neural networks. In [12], a neural tangent kernel (NTK) is proposed to prove the

convergence, and this tangent kernel is also implicit in these works [32–34]. Later, a non-asymptotic

proof using NTK is given in [35]. It is shown that a sufficiently wide network that has been fully trained

is indeed equivalent to a kernel regression predictor. In this work, we give a non-asymptotic proof of the

convergence for our BINet.

In BINet, the density function in the boundary integral form is approximated by a neural network

as h(y, θ). And a boundary integral operator is performed on the density function, giving the output

of BINet on the boundary as v(x) = A[h](x, θ), x ∈ ∂Ω. Here A = S for the single layer potential and

A = ±I/2+D for the double layer potential of the interior problem or the exterior problem. For simplicity,

we denote A[f ](x) = ∫
∂Ω

G̃(x, y)f(y)dy, x ∈ ∂Ω as the output of BINet limited on the boundary. And

the loss is given by the difference between the output and the boundary values, see Section 3 for detail.

Due to the operator A, the convergence analysis of this structure is non-trivial.

In the learning process, the evolution of the difference between the output and the boundary value

obeys the following ordinary differential equation

d

dt
(v(x, θ(t))− ṽ(x)) = −

∫
∂Ω

(v(x′, θ(t))− ṽ(x′))Nt(x, x
′)dx′ (4.1)
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Source: Lin et al., BINet: Learning to Solve Partial Differential Equations with Boundary Integral Networks (2021)

Your Skills
• Programming skills in Python
• Knowledge in machine learning
• Implementation skills in PyTorch or Tensorflow
• Basic knowledge in numerical methods (e.g. FEM)
• Interest in computational acoustics
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