

Studienarbeit/HiWi: Effiziente Elektromotoren

Simulation Elektromotor

Motivation/Ausgangssituation

Zur Fertigung effizienterer Elektromotoren ist eine möglichst präzise Führung des magnetischen Flusses in den verwendeten Elektroblechen notwendig. Derzeit geschieht die Lenkung des magnetischen Flusses durch Aussparungen in den Elektroblechen (s. Abbildung 1), welche zu einer Verminderung der mechanischen Festigkeit des Blechwerkstoffs führen. Durch mechanische Spannungen, die durch Prägen in das Bleche eingebracht werden, kann die Magnetfeldlenkung ohne Beeinträchtigung der mechanischen Festigkeit erfolgen. Der Effekt der Magnetflussführung durch geprägte Strukturen kann anhand einer magnetischen Simulation abgebildet werden.

Abbildung 1: Ersetzen der Aussparungen zur magnetischen Flussführung (oben) durch lokale Prägungen (unten)

Lösungsansatz

In einer magnetischen Simulation kann der magnetischen Fluss abhängig vom angelegten magnetischen Feld ermittelt werden. Hierfür werden die magnetischen Materialeigenschaften des Elektrobleches als Eingangsgröße benötigt. Durch das Prägen wird lokal die magnetische Permeabilität verändert, welche an

Laborproben mittels Single-Sheet-Tester ermittelt wird. In der Simulation werden geprägte Blechbereiche mit einer geringeren magnetischen Permeabilität definiert, wodurch die Berechnung des magnetischen Flusses ermöglicht wird.

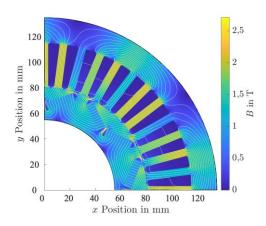


Abbildung 2: Simulation des magnetischen Flusses einer Permanent-Magnet Synchron-Maschine

Aufgabenstellung

Im Rahmen der Studienarbeit soll in Altair Flux ein magnetisches Simulationsmodell für eine Synchron-Reluktanz-Maschine mit geprägten Bereichen aufgebaut werden. Hierbei erfolgt der Vergleich zwischen herkömmlichen, geschnitten magnetischen Flussbarrieren und geprägten Blechbereichen. Diese Simulation soll Aufschluss über die Motorperformance geben.

Voraussetzungen

- Grundkenntnisse in numerischen Methoden
- Eigenständige und sorgfältige Arbeitsweise
- Zuverlässigkeit

