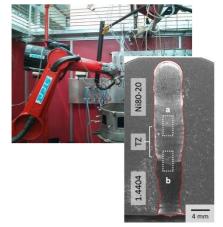


Master Thesis / Semester Thesis

Development of processing parameters to built a functional graded material steel to Ni-based alloy

Motivation


Functionally graded materials (FGMs) offer a unique approach to seamlessly transition between different materials, combining the desirable properties of both. In additive manufacturing, the challenge lies in developing optimal processing parameters to achieve a controlled gradient while maintaining structural integrity and performance. Steel-Ni-based alloy FGMs have significant potential in high-temperature and wearresistant applications, such as aerospace and energy sectors, where tailored material properties can enhance performance and longevity.

Objective

This thesis aims to develop and optimize the processing parameters for fabricating a functionally graded material (FGM) transitioning from steel to a Ni-based alloy using additive manufacturing. The research will focus on understanding the influence of process parameters on microstructure evolution, mechanical properties, and gradient control to ensure a defect-free, high-performance material.

Tasks

- Literature review.
- Process design and experimental setup
- Experimental fabrication and characterization
- Report writing and documentation

Your profile

- Prior experience with additive manufacturing is desirable.
- Familiarity Design of Experiments (DOE) is an advantage.
- Ability to work independently and conscientiously.
- Good proficiency in English (written and spoken).

Contact

Dr. Johnnatan Rodriguez Fernandez johnnatan.rodriguez@tum.de Tel. +49 89 289 55351

