

Master's Thesis

(Experimentell)

NH₃-Utilizing Solid Oxide Fuel Cells for Green Power Generation Impact of NH₃ on Stability of Anode Components

Description:

Solid Oxide Fuel Cell (SOFC) technology is considered one of the most efficient energy conversion technologies. However, the highly demanding storage and transport processes of H₂ are standing as major obstacles. In this regard, NH₃ is considered to be a quite promising H₂ carrier owing to its appealing thermo-physical properties. Also, NH₃ can be directly utilized in SOFCs, which can enhance the SOFC system efficiency significantly. However, direct utilization of NH₃ in a SOFC makes the system more complicated due to the ammonia decomposition reaction. Besides, NH₃ can react with the components within anode compartment, such as mesh, separator, etc., which reportedly results in various issues regarding the performance and durability of the SOFC.

In this study, we plan to investigate the stability of the anode components of potential materials under NH₃ atmosphere. One of the objectives of the study is to determine the most stable materials of the anode components under NH₃ atmosphere. The other objective of the study is to determine the operating conditions which minimize or eliminate the impact of NH₃ on the anode components. The interaction between NH₃ and anode components will be investigated through TGA (Thermo-gravimetric Analysis). After the TGA, the microstructures of the anode components will be inspected using SEM (Scanning Electron Microscopy) and chemical characterization techniques (EDX, XRD, etc.). Eventually, the study will reveal the stability of the potential anode components, and under what conditions these components can be safely operated, which will support the development of the direct NH₃-utilizing SOFCs.

Work Packages:

- TGA of the anode components of potential materials under NH₃ atmosphere
- Inspection of the components' microstructures using SEM
- Chemical characterization of components' microstructures using EDX, XRD, etc.

*		NH3 00 0	$\begin{array}{c} Catalyst\\ \\ NH_3 \rightarrow \end{array} \rightarrow H_2 \end{array}$
Solar e	Water Haber- splitting Bosch		Hydrogen generation
		Transport NH ₃	
Wind	Electrochemical ammonia synthesis	Storage	Electricity generation
Renewable electricity	Green ammonia synthesis	Ammonia transport and storage	Ammonia utilisation

https://doi.org/10.1016/j.enconman.2020.113729

Proton-conducting DASOFC (H-SOFC)
Cathode Electrolyte Anode

https://doi.org/10.1039/D3QI01557B

Beginn ab:	01.03.2025
Kontakt:	Dr. Özgür Aydın
Raum:	IAS 2.001
Tel.:	089 289 10654
Email:	ozgur.aydin@tum.de